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ABSTRACT: Scientific workflows typically represented as Directed Acyclic Graphs (DAGs) have become 

indispensable for orchestrating complex, data-intensive computational experiments in scientific and industrial domains 

. Each node in a DAG denotes a distinct computational or data operation (e.g., data collection, storage, aggregation, 

analysis, or simulation), and the directed edges capture precedence and data dependencies among these tasks. Efficient 

scheduling of these tasks is critical to guarantee that interdependent operations complete in the correct order while 

making judicious use of available resources. As workflow sizes and complexities escalate, traditional on-premises 

infrastructures struggle to satisfy the dynamic computational demands, prompting a migration toward cloud-based 

environments . 

 

I. INTRODUCTION 
 

Cloud platforms offer on-demand, scalable provisioning of compute and storage resources, which aligns well with the 

elastic requirements of scientific workflows [5]. However, centralized cloud data centers can suffer from resource 

contention, queuing delays, and significant energy consumption issues that become more pronounced under peak 

workloads or with exceptionally large-scale workflows [6]. To mitigate such constraints, multi-cloud strategies have 

been explored, distributing workload across several cloud providers to enhance resource availability and fault tolerance 

[7]. Yet, inter-cloud communication overheads and latency variability often undermine performance gains in real-world 

scenarios [8]. 

 

Edge computing has emerged as a complementary paradigm by shifting computation closer to data sources, thereby 

reducing end-to-end latency and enabling near-real-time processing [9]. When combined with heterogeneous multi-core 

architectures comprising, for instance, high-performance “big” cores alongside energy-efficient “little” cores edge-

cloud hybrid infrastructures can further accelerate workflow execution and curb energy expenditure [10], [11]. Despite 

these advantages, existing scheduling schemes seldom integrate cost considerations (i.e., both time and energy) with the 

strategic reutilization of idle multi-core resources across edge and cloud tiers. Moreover, most multi-objective 

approaches focus on homogeneous clouds or static resource assignment, leaving a gap in methods that dynamically 

exploit heterogeneous cores to meet tight deadlines without inflating energy costs [12], [13]. 

 

A key research challenge, therefore, is to devise a scheduling framework that not only respects the DAG’s precedence 

constraints and deadline requirements but also minimizes energy and time overhead by reallocating underutilized multi-

core resources across the edge-cloud continuum. While prior work has addressed makespan–cost trade-offs [14], [15], 

these solutions typically overlook the potential of recycling idle computational slots on heterogeneous cores, especially 

within resource-constrained edge nodes. In the absence of adaptive mechanisms to identify optimal frequency–core 

pairings for each task balancing energy consumption and execution delay, deadline violations and energy wastage 

remain unavoidable. 

 

To bridge these gaps, we propose a novel Multi-Agent Deep Reinforcement Learning (MADRL) framework, 

designated as Cost-effective Resource Reutilization for Scientific Workflow Applications (CRRU-MADRL). CRRU-

MADRL jointly optimizes makespan and energy metrics by dynamically selecting frequency states for heterogeneous 

cores and reutilizing idle resources in both edge and cloud servers. Each agent in the framework corresponds to a sub-

workflow or task cluster, learning to negotiate resource allocations and timing decisions that minimize idle periods 
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while satisfying precedence and deadline constraints. By coordinating multiple agents through a shared reward 

structurepenalizing energy-intensive configurations and missed deadlines, CRRU-MADRL continuously adapts to 

varying workflow demands and resource availabilities, thereby reducing overall cost (time + energy) and improving 

resource utilization in edge-cloud platforms. 

 

II. LITERATURE SURVEY 
 

In recent years, cloud computing has become a pivotal platform for executing complex workflows, necessitating 

efficient scheduling algorithms that balance performance metrics such as execution time, cost, energy consumption, and 

reliability. This literature survey examines several notable studies that propose innovative approaches to workflow 

scheduling in cloud environments, focusing on their methodologies, optimized metrics, performance improvements, 

significance, limitations, and future research directions. M. Fan et al [16], introduced a scheduling algorithm that 

dynamically adjusts task priorities and optimizes critical tasks within budget constraints. The approach involves 

analyzing task dependencies and resource requirements to allocate resources effectively. The primary metrics 

optimized are execution cost and makespan, ensuring that workflows are completed within the specified budget and 

time constraints. Their method demonstrates a significant reduction in execution costs and makespan compared to 

traditional scheduling algorithms, highlighting its efficiency in resource utilization. By focusing on critical tasks and 

adjusting priorities dynamically, their approach enhances the efficiency and cost-effectiveness of workflow executions 

in cloud environments. However, the algorithm may face challenges in highly dynamic cloud environments where 

resource availability fluctuates rapidly, potentially affecting its adaptability. S. Tao et al. [17], presents the deadline-

budget-aware algorithm, which applies Ant Colony Optimization (ACO) to schedule workflows under strict deadline 

and budget constraints. The algorithm models the scheduling problem as a graph and utilizes artificial ants to explore 

optimal paths that minimize execution costs while meeting deadlines. The focus is on minimizing execution cost 

without violating predefined deadlines and budget limits. Experimental results indicate that their method outperforms 

several state-of-the-art methods, particularly in complex workflows like CyberShake, by achieving lower costs and 

better adherence to deadlines. The integration of ACO provides a robust framework for handling the combinatorial 

nature of workflow scheduling, offering a balance between exploration and exploitation in search of optimal solutions. 

However, the performance of DB-ACO can be sensitive to the parameter settings of the ACO algorithm, which may 

require fine-tuning for different workflow scenarios.  

 

S. -E. Chafi et al. [18], et al. proposes a Particle Swarm Optimization (PSO)-aware model tailored for scheduling 

workflows in heterogeneous fog computational platforms. The algorithm aims to optimize both execution time and 

energy consumption by considering the unique characteristics of fog nodes. The primary metrics optimized are makespan 

and energy consumption, addressing both performance and sustainability concerns. The PSO-aware model achieves a 

notable reduction in makespan and energy usage compared to baseline scheduling approaches, demonstrating its 

effectiveness in fog computing contexts. By optimizing for energy efficiency alongside execution time, the study 

contributes to the development of sustainable computing practices in emerging fog environments. However, the 

algorithm's performance may be influenced by the heterogeneity of the fog nodes and the variability in network 

conditions, which could affect its generalizability. J. Perez-Valero et al. [19], study introduces an Network Functions 

Virtualization (NFV) concept to support energy-aware adaptive scaling approach. The method dynamically adjusts the 

number of active servers based on workload demands and reliability requirements. The focus is on minimizing energy 

consumption while maintaining the reliability of NFV services. The adaptive scaling approach results in significant 

energy savings without compromising service reliability, as evidenced by experimental evaluations. The research 

addresses the critical balance between energy efficiency and reliability in NFV infrastructures, contributing to more 

sustainable and dependable cloud services. The approach may require accurate workload prediction models to effectively 

scale resources, which can be challenging in unpredictable traffic scenarios.  

 

S. Ijaz et al. [20], presents an improved multi-objective differential evolution algorithm designed to schedule tasks in fog 

computing environments. The algorithm simultaneously optimizes energy consumption, execution time, and cost, 

considering the constraints inherent in fog computing. The key metrics optimized include energy efficiency, makespan, 

and execution cost, providing a comprehensive approach to resource management. The proposed algorithm demonstrates 

superior performance in balancing the trade-offs between energy consumption, time, and cost compared to existing 

scheduling methods. By addressing multiple objectives, the study offers a holistic solution for task scheduling in fog 

computing, enhancing both efficiency and cost-effectiveness. The complexity of the algorithm may lead to increased 

computational overhead, which could be a concern in resource-constrained fog environments. X. Wang et al. [21], 
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employs coalition reinforcement learning (CRL) to optimize multi-workflow scheduling and cloud bundle provisioning. 

The approach forms adaptive coalitions among workflows for efficient resource utilization. The metrics optimized are 

cost, execution time, and resource utilization. The model achieves better cost efficiency and faster execution times 

compared to traditional heuristic-based approaches. The model enhances workload management in large-scale cloud 

systems by dynamically adjusting resource allocations. However, the model induces high computational complexity in 

large-scale workflow scenarios.  

 

H. Lahza et al. [22], a deep reinforcement learning (DRL) approach is proposed to optimize resource allocation across 

edge and cloud layers for workflow scheduling. The metric optimized are energy consumption, execution time, and 

resource utilization. The model achieves lower energy consumption while maintaining workflow execution efficiency 

compared to conventional methods. Addresses the challenge of balancing workload distribution between cloud and edge 

resources. However, The model’s efficiency is affected by network fluctuations and edge resource constraints. Krishna et 

al. [23], utilizes the Asynchronous Advantage Actor-Critic (A3C) reinforcement learning model to prioritize workflow 

scheduling in cloud environments. The metric optimized: Makespan, energy consumption, and cost. The model shows 

significant improvements in reducing makespan and cost compared to conventional scheduling methods. The approach 

effectively handles dynamic workload variations by leveraging reinforcement learning techniques. The training phase is 

computationally expensive, making it less suitable for real-time scheduling.  

 

Mangalampalli et al. [24], presented a deep reinforcement learning-based scheduler that considers energy efficiency and 

temperature constraints in cloud workflow scheduling. The metric optimized are energy consumption, execution time, 

and thermal efficiency. The model demonstrates reduced energy consumption and improves thermal stability in cloud 

data centers. The model ensures sustainable and efficient workflow execution by integrating energy and thermal 

considerations. However, the system’s complexity increases due to additional thermal monitoring requirements. L. 

Zhang et al. [25], Methodology: Proposes reliability-aware scheduling strategies considering energy constraints in cloud 

computing. The metric optimized are reliability, energy efficiency, and execution time. The model enhances system 

reliability while maintaining optimal energy usage compared to conventional models. The approach ensures high 

workflow reliability without significant trade-offs in energy consumption. However, the model increased computational 

overhead due to reliability assessments. The Table 1, provide a deep rooted analysis of various scheduling methods. 

 

Author, Ref 

No. 

Cloud 

Model Used 

Metrics 

Optimized 

Methodology 

Introduced 

Optimization 

Strategy 

Workflow 

Used 

Result 

Studied 

M. Fan et al. 

[16] 

Cloud 

Computing 

Budget, 

Makespan 

Priority 

Adjustment 

and Critical 

Task 

Optimization 

Heuristic-based 

Approach 

Scientific 

workflow 

Improved 

Budget 

Utilization and 

Task 

Scheduling 

Efficiency 

S. Ijaz et al. 

[20] 

Fog 

Computing 

Energy, Time, 

Cost 

Improved 

Multi-

Objective 

Differential 

Evolution 

(IMODE) 

Evolutionary 

Algorithm 

Scientific 

workflow 

Enhanced 

Energy 

Efficiency and 

Cost 

Reduction 

H. Lahza et al. 

[22] 

Edge-Cloud Resource 

Utilization, 

Latency, Cost 

Adaptive 

Multi-

Objective 

Resource 

Allocation 

using Deep 

Reinforcement 

Learning 

(DRL) 

Deep 

Reinforcement 

Learning 

Scientific 

workflow 

Improved 

Resource 

Utilization and 

Reduced 

Latency 

M.S.R. Krishna 

et al. [23] 

Cloud 

Computing 

Makespan, 

Task 

Prioritized 

Workflow 

Deep 

Reinforcement 

Scientific 

workflow 

Enhanced 

Task 
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Prioritization Scheduler 

Using 

Asynchronous 

Advantage 

Actor-Critic 

(A3C) 

Algorithm 

Learning Scheduling 

and Reduced 

Execution 

Time 

S. Sudheer 

Mangalampalli 

et al. [24] 

Cloud 

Computing 

Energy, 

Temperature, 

Workflow 

Efficiency 

Energy and 

Temperature 

Aware Deep 

Reinforcement 

Learning 

Workflow 

Scheduler 

Deep 

Reinforcement 

Learning 

Scientific 

workflow 

Reduced 

Energy 

Consumption 

and 

Maintained 

Temperature 

Constraints 

L. Zhang et al. 

[25] 

Cloud 

Computing 

Reliability, 

Energy 

Consumption 

Reliability 

Enhancement 

Strategies for 

Workflow 

Scheduling 

Heuristic and 

Optimization-

Based 

Approach 

Scientific 

workflow 

Improved 

Workflow 

Reliability and 

Energy 

Efficiency 

 

These studies contribute significantly to workflow scheduling in cloud and edge computing by leveraging advanced 

optimization techniques such as reinforcement learning and heuristic models. The reviewed literature focuses on 

workflow scheduling in cloud and edge computing environments, optimizing various performance metrics through 

advanced methodologies. Several studies employ Deep Reinforcement Learning (DRL) [22], [23], [24], to enhance 

resource allocation, task prioritization, and energy efficiency. Others utilize heuristic-based [16], [24] and evolutionary 

optimization techniques [20], to balance constraints like budget, reliability, and execution time. The primary objectives 

across these works include reducing makespan, cost, energy consumption, and latency, while improving task scheduling 

efficiency, reliability, and resource utilization. Overall, these approaches contribute significantly to efficient cloud 

workflow management by integrating adaptive and intelligent scheduling strategies. However, challenges remain in 

computational complexity, network variability, and real-time adaptability. Thus, considering research challenges in next 

section introduces an efficient scheduling mechanism that consider maximizing resource usage for reducing both energy 

and makespan. 

 

III. OBJECTIVES OF THE RESEARCH WORK 
 

Theresearch objectives are given below.  

1. To design makespan-energy and cost-effective metrics for virtual resource function optimization for scientific 

workflow provisioning in edge-cloud platforms. 

2. To design Multi-agent Reinforcement Learning Framework for cost effective scientific workflow application 

resource reutilization in edge-cloud platforms. 

3. To develop service function chain reutilization optimization for meeting scientific workflow task multi-level 

deadline constraint. 

4. To design and develop cost-reliability metrics for reusability of virtual resource function and service chaining 

optimization for execution complex multiple scientific workflows in edge-cloud platform. 

 

Multi-agent deep reinforcement learning framework for cost effective scientific workflow application resource 

reutilization in Edge-Cloud platform 
This section presents a cost-effective scientific workflow application resource reutilization aware scheduler designed 

using MADRL. The architecture of CRRU-MADRL in edge-cloud platforms given in Figure 1. 
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Figure 1. Proposed Heterogenous Cloud Computing Architecture for Execution of Scientific Workflows. 

IV. SYSTEM MODEL 

 

Depending on the user's specified QoS/SLA requirements, the CRA invokes the appropriate scheduling strategy: REWS 

or MOWS for traditional execution. CRRU-MADRL model for cost-effective scheduling ensuring lesser energy, time, 

with enhanced resource utilization in heterogeneous edge-cloud settings. The CRA then queries the Workflow Resource 

Administrator (WRA) to assess the current resource availability across edge and cloud servers. This includes evaluating: 

Heterogeneous multi-core processors, available memory, bandwidth, network latency and node energy status. The 

CRRU-MADRL framework, employs multiple reinforcement learning agents each responsible for a cluster of tasks or a 

DAG level. The agents operate cooperatively to: Dynamically select optimal frequency–core pairings using DVFS 

(Dynamic Voltage and Frequency Scaling). Reutilize idle resources (underutilized CPU cores, memory buffers, 

transmission paths) across both edge and cloud layers. Balance trade-offs between makespan, energy consumption, and 

resource utilization. Learn and adapt scheduling policies using feedback from task execution results. To enhance the 

flexibility and efficiency of scientific workflow execution, CRRU-MADRL integrates Virtual Software Functions 

(VSFs) that represent modular service functions like: Aggregation Function: Merges intermediate results from 

distributed sources at edge nodes to reduce redundant data transfer to cloud. Pipelining Function: Enables sequential 

chaining of dependent tasks across nodes with overlapping compute–transfer stages for speedup. Computation Function: 

Executes task logic on appropriate compute units (e.g., AI models, simulations, analytics). Transmission Function: 

Handles data migration between edge-edge or edge-cloud depending on network bandwidth and latency. These VSFs are 

abstracted as reusable execution units. The CRRU-MADRL model dynamically decides when and where to deploy, 
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reuse, or migrate these functions based on: Task characteristics (data volume, urgency, compute complexity), Network 

conditions (bandwidth, latency), and Resource state (CPU load, energy budget). Reutilization is achieved through: 

Function Caching: Previously instantiated Virtual Service Functions (VSFs) are cached at edge or cloud nodes and 

reused for recurring tasks. This caching mechanism reduces startup latency and avoids the overhead of redeploying 

identical functions for frequently appearing sub-tasks across multiple workflow executions. By retaining service state 

and configuration at local nodes, CRRU-MADRL minimizes data movement and accelerates execution, especially for 

repetitive scientific workflow components such as preprocessing, feature extraction, or simulation kernels. 

 

Cost and Resource Reutilization Model 

Directed Acyclic Graphs (DAG) are used for modeling the workflows that are scheduled by the proposed hierarchical 

scheduling framework. The tasks of a workflow are represented by the set of nodes, and the 

precedence constraints between tasks are represented by the set of edges, of a DAG, 

. It is also assumed that workflows are containerized (each task is a container). Workflows are to be 

scheduled across a federation of geo-distributed datacenters which are powered through a 

combination of green energy from renewable energy sources and brown-energy from the grid. Therefore, at any instance, 

the total power consumption, of the datacenter federation is the sum of green power, and brown power, 

consumed by the underlying cloud infrastructures and operations. The datacenter, comprises of a set of 

heterogeneous severs, . Power consumed by a server, is calculated using the CPU utilization-

based power model presented in [31] as follows: 

 

(1) 

where is the idle power consumption of the server which is a constant regardless of its current utilization 

and is the dynamic power consumption which is dependent on the current server utilization, . 

Accordingly, the total power consumed by the datacenter, during the th time interval is computed as follows: 

 

(2) 

The objective of the proposed hierarchical scheduling framework is to minimize total brown energy utilization of the 

cloud datacenter federation while also optimizing workflow execution time. The total brown energy consumption at the 

datacenter during the kth time interval can be represented as: 

 
(3) 

where is the total green energy available at the datacenter during the kth time interval. Accordingly, the 

primary objective of the global scheduler which mainly focuses on minimizing the brown energy usage during the th 

time interval can be represented as follows: 

 

(4) 

Once a task is assigned to a datacenter , the local scheduler allocates the task to a server that jointly minimizes the 

total energy consumption and execution time of the task. Hence, the objective of the local scheduler during the kth 

interval can be represented as follows: 

 

(5) 

where is the total number of tasks executed during the kth time interval. and denotes the total execution time 

and total energy consumption associated with the execution of task , respectively. The execution time includes the 

maximum data transfer time from predecessor nodes, computation time of the task as well as the waiting time of the task 

at the node ( ) before the task is actually executed. It can be computed as follows: 
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(6) 

where, is the size of the task , and is the processing rate of the node to which task is assigned. The ratio is the 

computation time of the task. is the data transfer time from the node in which predecessor executed to the 

execution node of task . If tasks are in the same datacenter, then can be expressed as the ratio  where 

is the size of data to be transferred from to and is the network bandwidth within the same datacenter. If 

data transfer is between nodes in different datacenters, can be represented as , where represents the 

network bandwidth between datacenters. Total energy consumed during the execution of task is computed as follows: 

 
(7) 

where is the current CPU utilization level of the execution node, and the rates of power consumption at active and idle 

states of the processors are denoted by and , respectively. Considering the power consumption associated 

with the transmission of data to be , the energy consumed during the transfer of data from predecessor nodes is 

computed as follows: 

 

(8) 

The total energy consumed is the sum of computation and communication energy, and is computed as: 

 
(9) 

The computation time of a task,  can be represented as: 

 

(10) 

All the precedence constraints of task,  must be satisfied before its execution commences. Accordingly, the execution 

of all the predecessors must be completed, and the output data required for the execution of  must be transmitted to the 

node in which it is scheduled. If  is an immediate predecessor of  and the size of data to be transferred from  to  

is , then the total transmission time ( ) can be denoted as follows:  

 

(11) 

where  is the bandwidth between the execution nodes of  and . Task execution delay,  primarily depends 

on the computation time, of the task, and the maximum data transfer time from predecessor nodes, 

. The waiting time,  before a task gets scheduled also contributes to total execution 

delay. Accordingly,  can be represented as: 

 

(12) 

The finish time,  of task,  that started execution at time,  can then be expressed as: 

 
(13) 

The completion time,  of a workflow is equivalent to the time at which that last task of the workflow completes 

execution. It can be denoted as: 

 

(14) 

where  represents the set of all tasks of the workflow. The computation cost of  that executes in a Node with unit cost 

per second,  can be represented as: 

 
(15) 
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The cost of execution,  of a workflow is equivalent to the sum of execution costs of all tasks, and it can be denoted 

as follows: 

 

(16) 

The objective of the scheduling problem is to minimize the cost of workflow executions, and it can be denoted as 

follows: 

 

(17) 

where  is the total number of workflows submitted to the system.In order to achieve cost minimization while ensuring 

energy efficiency and effective resource reutilization, particularly the reutilization of Virtualized Server Functions 

(VSFs) we employ a Multi-Agent Deep Reinforcement Learning (MADRL) approach tailored for heterogeneous edge–

cloud environments with multi-core processing capabilities. 

 

Multi-Agent Deep Reinforcement Learning Model 

Reinforcement Learning (RL), a branch of machine learning, empowers agents to interact with dynamic environments 

and learn optimal policies through experience-based reward feedback. Each agent observes the current environmental 

state , selects an action , and transitions to a new state , receiving a corresponding reward . Over time, the 

agent aims to maximize the cumulative discounted reward: 

 

 (18) 

where  is the discount factor and  is the parameterized policy with learnable weights . The 

policy gradient is given by: 

 

(19) 

Here,  is the state–action value function estimating expected returns for executing action  in state  under 

policy  . To manage complexity and partial observability in distributed edge-cloud environments, a MADRL model is 

adopted. The system incorporates both global and local agents, structured hierarchically: a global scheduler operates 

across data centers, while local schedulers manage task assignments within individual Physical Machines (PMs). The 

distributed model is formulated using a Partially Observable Markov Game (POMG), defined as a seven-tuple 

, where  denotes agents set,  denotes finite states set,  denotes starting state 

distribution,  corresponds to action set available to agent ,  defines state-transition probability function given joint 

actions ,  represents observation set for agent  and  denotes reward function 

for agent ; where agents interact based on joint action sets and local observations. For agent , the policy gradient with 

shared critic knowledge is expressed as: 

 
(20) 

In Eq. (20),  denotes critics estimated of state-action value function, taking into account the 

state  and joint actions of all agents. This formulation enables each agent to learn distinct policies while considering 

joint environmental dynamics and cooperative scheduling behavior. 

 

Global Scheduler 

Each workflow consists of containerized tasks subject to Directed Acyclic Graph (DAG) precedence constraints. The 

global scheduler identifies tasks ready for execution i.e., those whose dependencies have been resolved and invokes the 

DRL agent accordingly. The state representation includes: : Net green energy surplus or deficit in data center , 

: Average processing speed of servers in , : Current resource utilization level in ,  and ,  : 

CPU and memory requirements of task .The action space is defined as:  

 (21) 

The reward function integrates both the environmental sustainability and scheduling efficiency: 
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(22) 

Here,  and  denote the available green energy and total energy demand of data center , respectively, 

while  reflects the performance feedback from the corresponding local scheduler. The training process of actor-

critic DRL model for global-scheduler for workflow scheduling is presented in Algorithm 1 as discussed below.  

 

Algorithm 1: MADRL model for Global-Scheduler 

Input: : Actor policy with parameters , : Critic value function with parameters , : Total 

number of training episodes, : Maximum steps per episode. 

Output: Optimized policy  for cost-efficient task scheduling. 

Step 1. Start 

Step 2. Initialize actor : and critic  with random weights  and  

Step 3. For each episode= do 

Step 4.  Reset environment to initial state  

Step 5.  For each step= do 

Step 6.   Observe global state :  includes {  (green energy surplus/deficit),                         

(avg. processing speed),  (current utilization), VSF availability,                         Task 

profile , } 

Step 7.   Dispatch task  to selected data center via  

Step 8.   Receive feedback from local-scheduler using Algorithm 2: Local reward and local 

action  

Step 9.   
Compute global reward:  

Step 10.   Formulate joint action   

Step 11.   Critic evaluates  

Step 12.   Compute TD error  

Step 13.   Update critic parameters  using gradient  

Step 14.   Update actor parameters  using policy gradient: 

 

Step 15.  End For 

Step 16. End For 

Step 17. Return optimized policy  

Step 18. Stop 

 

Local Scheduler and VSF Reutilization 

Upon receiving task assignments from the global agent, the local scheduler attempts to allocate them to appropriate PMs 

based on task requirements and server availability. If resources are unavailable, it alerts the global agent for 

reassignment. The local agent’s state includes: PM processing power, Server utilization metrics, Task size and resource 

demand. The reward is calculated in terms of execution time reduction, energy consumption, and VSF reutilization. 

Efficient reuse of previously activated VSFs leads to lower startup costs, reduced migration overhead, and minimal 

energy waste. The local agent updates its policy to prioritize such reuse while maintaining system-wide QoS goals. 

Performance feedback is communicated to the global agent to improve future scheduling decisions.  

Work carried out so far 

This section presents an experimental evaluation of the proposed CRRU-MADRL for executing scientific workflows in a 

heterogeneous computational system. To assess its effectiveness, CRRU-MADRL is compared against existing 

scheduling approaches, including Reliable and Efficient Workflow Scheduling (REWS) [25] and Multi-Objective 

Workflow Scheduling (MOWS) [15], [20]. REWS is selected as a baseline due to its focus on energy minimization while 

meeting task deadlines, whereas MOPW is designed to optimize resource utilization while reducing makespan and 

energy consumption. The implementation of CRRU-MADRL, along with baseline models such as REWS and MOWS is 
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carried out using the CloudSim-based simulator [26], [27], [28].  The Inspiral and Cybershake scientific workflow is 

utilized to assess the scheduler models [29]. Inspiral is characterized by high memory and processing overhead, whereas 

Cybershake exhibits intensive I/O and processing demands, making them ideal benchmarks for testing scheduler 

robustness across diverse computational environments. The simulation study evaluates key performance metrics, 

including makespan and energy consumption. Experiments are conducted on a Windows 11 operating system, running 

on an Intel Core i7 processor with 16 GB memory with CUDA GPU support having 4 GB memory. The experimental 

setup consists of five physical hosts and 50 virtual machines, ensuring a realistic cloud execution environment. The 

simulation parameters considered for this study are detailed in Table 2. By systematically analyzing the performance of 

CRRU-MADRL  against state-of-the-art scheduling models, this study provides a comprehensive evaluation of its 

capability to optimize energy efficiency and execution time while maintaining computational reliability in heterogeneous 

cloud computing platforms. 

Table 1: Simulation parameter 

Parameter Configured size 

Scientific workflow Inspiral and Cybershake 

Workflow complexity size 30, 50, 100, 1000 

Data centers considered 2 

Number of physical machines 10 

Number of virtual computing node with smaller-core and larger-core 20 

The RAM capacity of the host 32 GB 

Bandwidth of Physical machine 1000 Mbps 

Bandwidth of Virtual computing node 5 Mbps 

Storage size of Physical machine 1 TB 

Storage size of virtual computing node 32 GB 

virtual computing node operating system Ubuntu 

Hypervisor configuration Xen 

Performance metrics Energy consumption, makespan 

 

Energy Consumption Performance: 

This section assesses the energy consumption of three scheduling frameworks namely REWS, MOWS, and CRRU-

MADRL  by analyzing the makespan needed to finish execution of scientific workflows of different sizes. The 

makespan, defined as the total time to execute a given set of tasks, is a critical performance metric in scientific 

computing. Figure 2 demonstrates the energy consumption performance when executing the Inspiral workflow across 

varying task sizes. The results show that CRRU-MADRL significantly reduces energy usage by 44.3% and 35.4% when 

compared to REWS and MOWS, respectively. The results indicate that CRRU-MADRL outperform the baseline models 

by a considerable margin, making them highly efficient for executing large and complex workflows. Figure 3 exhibits 

the energy consumption outcome for Cybershake workflows, which include diverse size with varying computational 

demands. The results reveal that CRRU-MADRL reduces energy consumption by 38.88% and 58.9% compared to 

REWS and MOWS, respectively. These improvements highlight CRRU-MADRL as superior frameworks in minimizing 

makespan while processing complex scientific workflows. These improvements highlight CRRU-MADRL as superior 

frameworks in minimizing energy consumption while processing complex scientific workflows. The extended energy 

consumption reflected in REWS and MOWS can be credited to the inherent restrictions of each method. REWS 

primarily focuses on task allocation to VCNs with superior consistency and lower energy spending but does not rank 

optimizing makespan, resulting in longer execution times contributing increased energies. MOWS, on the other hand, 

utilizes soft computing models for scheduling tasks but is not specifically tailored for heterogeneous platforms, which 

leads to suboptimal task scheduling when compared to the advanced techniques employed by CRRU-MADRL. In 

difference, the substantial improvements in energy efficiency achieved by CRRU-MADRL are attributed to their 

advanced task scheduling strategies that optimize the heterogeneous computational core-based systems, which integrates 

both smaller-core and larger-core implementation models. These strategies, as outlined in (20) and (23), enable better 

load-performance distribution, enhanced task scheduling, and alignment with performance constraints. Consequently, 

energy consumption is significantly reduced, as demonstrated in (20)-(23). The improvements in energy efficiency, 

evident in Figures 2 and 3, underscore the effectiveness of CRRU-MADRL in outperforming REWS and MOWS in 

terms of execution time and scheduling efficiency. 
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Figure 2. Energy consumption vs Inspiral workflow size. 

 

 

Figure 3. Energy consumption vs CyberShake workflow size. 

Makespan Performance: 

This section assesses the makespan efficiency of three scheduling frameworks namely REWS, MOWS, and CRRU-

MADRL by analyzing the makespan needed to finish execution of scientific workflows of different sizes. The makespan, 

defined as the total time to execute a given set of tasks, is a critical performance metric in scientific computing. Figure 4 

demonstrates the makespan performance when executing the Inspiral workflow across varying task sizes. The results 

display that CRRU-MADRL significantly reduces the makespan by 81.8% and 76.7% when compared to REWS and 

MOWS, respectively. The results indicate that CRRU-MADRL outperform the baseline models by a considerable 

margin, making them highly efficient for executing large and complex workflows. Figure 5 exhibits the makespan 

outcome for Cybershake workflows, which include diverse size with varying computational demands. The results reveal 

that CRRU-MADRL reduces the makespan by 95.7% and 64.41% compared to REWS and MOWS, respectively. These 

improvements highlight CRRU-MADRL as superior frameworks in minimizing makespan while processing complex 

scientific workflows. The extended makespan reflected in REWS and MOWS can be credited to the inherent restrictions 

of each method. EMS primarily focuses on task allocation to VCNs with superior consistency and lower energy spending 

but does not rank optimizing makespan, resulting in longer execution times. MOWS, on the other hand, utilizes soft 

computing models for scheduling tasks but is not specifically tailored for heterogeneous platforms, which leads to 

suboptimal task scheduling when compared to the advanced techniques employed by CRRU-MADRL. In difference, the 
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substantial improvements in makespan performance achieved by CRRU-MADRL are attributed to their advanced task 

scheduling strategies that optimize the heterogeneous computational core-based systems, which integrates both smaller-

core and larger-core implementation models. These strategies, as outlined in (20) and (23), enable better load-

performance distribution, enhanced task scheduling, and alignment with performance constraints. Consequently, the 

execution time is significantly reduced, as demonstrated in (20)-(23). The improvements in makespan performance, 

evident in Figures 4 and 5, underscore the effectiveness of CRRU-MADRL in outperforming REWS and MOWS in 

terms of execution time and scheduling efficiency. 

 

 

Figure 4. Makespan vs Inspiral workflow size. 

 

 
 

Figure 5. Makespan vs CyberShake workflow size. 

Total Cost Performance: 

This section evaluates the cost efficiency of three workflow scheduling models REWS, MOWS, and CRRU-MADRL 

based on total cost incurred for executing scientific workflows of varying sizes. Total cost here includes computational 

resources consumed over time and energy, a key metric for large-scale cloud and edge-cloud infrastructures. Figure 6 

illustrates the total cost incurred for executing the Inspiral workflow with different task sizes (30, 50, 100, 1000). The 

proposed CRRU-MADRL framework demonstrates significant cost savings: At 30 tasks, CRRU-MADRL reduces total 

cost by 70.37% compared to REWS, 63.24% compared to MOWS, At 50 tasks, CRRU-MADRL reduces total cost by, 
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83.29% compared to REWS, 77.84% compared to MOWS, At 100 tasks, CRRU-MADRL reduces total cost by, 89.96% 

compared to REWS, 83.14% compared to MOWS, At 1000 tasks, CRRU-MADRL achieves a drastic cost reduction of 

98.09% compared to REWS, 98.05% compared to MOWS. These improvements are attributed to CRRU-MADRL’s 

dynamic core-aware task allocation and energy-aware reinforcement scheduling which collectively enhance resource 

reutilization across heterogeneous environments. Figure 5 presents the total cost for CyberShake workflow across 

increasing task complexities: At 30 tasks, CRRU-MADRL achieves cost reduction of, 95.16% compared to REWS, 

55.49% compared to MOWS, At 50 tasks, CRRU-MADRL achieves cost reduction of, 96.04% compared to REWS, 

63.21% compared to MOWS, At 100 tasks, CRRU-MADRL reduces cost by, 98.03% compared to REWS, 59.97% 

compared to MOWS, At 1000 tasks, the model shows a reduction of, 94.43% compared to REWS, 78.75% compared to 

MOWS. These results confirm that CRRU-MADRL offers scalable and energy-conscious scheduling, especially 

beneficial for high-load scientific workflows deployed in edge-cloud environments. The consistent superiority of CRRU-

MADRL over both REWS and MOWS across all task sizes and workflow types underlines its effectiveness in 

minimizing execution costs. These results reinforce the framework’s capability to maintain high resource utilization and 

execution efficiency while adhering to energy and cost constraints, positioning it as a practical solution for sustainable 

scientific workflow scheduling. 

 

 
 

Figure 6. Cost vs Inspiral workflow size. 
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Figure 7. Cost vs CyberShake workflow size. 

 

Future work to be carried out 

 To design quality and cost-effective metrics for virtual resource function optimization for scientific workflow 

provisioning in edge-cloud platform. 

 To develop service function chain reutilization optimization for meeting scientific workflow task multi-level 

deadline constraint. 

 To design and develop cost-reliability metrics for reusability of virtual resource function and service chaining 

optimization for execution complex multiple scientific workflows in edge-cloud platform. 

 Publication in good Scopus and Web-of-Science indexed journal  

 Development of objective 2 to 4 in Cloudsim simulator will be done. 

 Collection of different scientific work benchmarks will be done. 

 Mathematical model and paper writeup of objective 2 to 4 will be carried out. 
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